Real-time image annotation by manifold-based biased Fisher discriminant analysis

نویسندگان

  • Rongrong Ji
  • Hongxun Yao
  • Jicheng Wang
  • Xiaoshuai Sun
  • Xianming Liu
چکیده

Automatic Linguistic Annotation is a promising solution to bridge the semantic gap in content-based image retrieval. However, two crucial issues are not well addressed in state-of-art annotation algorithms: 1. The Small Sample Size (3S) problem in keyword classifier/model learning; 2. Most of annotation algorithms can not extend to real-time online usage due to their low computational efficiencies. This paper presents a novel Manifold-based Biased Fisher Discriminant Analysis (MBFDA) algorithm to address these two issues by transductive semantic learning and keyword filtering. To address the 3S problem, Co-Training based Manifold learning is adopted for keyword model construction. To achieve real-time annotation, a Bias Fisher Discriminant Analysis (BFDA) based semantic feature reduction algorithm is presented for keyword confidence discrimination and semantic feature reduction. Different from all existing annotation methods, MBFDA views image annotation from a novel Eigen semantic feature (which corresponds to keywords) selection aspect. As demonstrated in experiments, our manifold-based biased Fisher discriminant analysis annotation algorithm outperforms classical and state-of-art annotation methods (1.K-NN Expansion; 2.One-to-All SVM; 3.PWCSVM) in both computational time and annotation accuracy with a large margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross Concept Local Fisher Discriminant Analysis for Image Classification

Distance metric learning is widely used in many visual computing methods, especially image classification. Among various metric learning approaches, Fisher Discriminant Analysis (FDA) is a classical metric learning approach utilizing the pair-wise semantic similarity and dissimilarity in image classification. Moreover, Local Fisher Discriminant Analysis (LFDA) takes advantage of local data stru...

متن کامل

Palmprint Recognition Based on Local Fisher Discriminant Analysis

A new palmprint recognition method based on local Fisher discriminant analysis(LFDA) is proposed. In order to solve the singularity of the eigenvalue equation matrix in small-size-sample cases such as image recognition, image down-sample is first used to reduce the palmprint space dimensionality. The LFDA is applied to extract the low projection vectors. Then the training images and test images...

متن کامل

Kernel Local Fuzzy Clustering Margin Fisher Discriminant Method Faced on Fault Diagnosis

In order to better identify the fault of rotor system,one new method based on local fuzzy clustering margin fisher discriminant (LFCMFD) was proposed. For each point on manifold, the farthest point in local neighborhood and the nearest point outside local neighborhood usually constituted the local margin. LFCMFD introduced fuzzy cluster analysis algorithm, eliminated the influence of pseudo-mar...

متن کامل

Manifold Adaptive Kernel Local Fisher Discriminant Analysis for Face Recognition

To efficiently cope with the high dimensionalities and complex nonlinear variations of face images in face recognition task, a novel manifold adaptive kernel local Fisher discriminant analysis algorithm is proposed in this paper. The core idea of this algorithm is as follows: First, the local manifold structure of the face image is modeled by a nearest neighbor graph. Then, an original input ke...

متن کامل

A multi-manifold discriminant analysis method for image feature extraction

In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for an image feature extraction and pattern recognition based on graph embedded learning and under the Fisher discriminant analysis framework. In an MMDA, the within-class graph and between-class graph are, respectively, designed to characterize the within-class compactness and the between-class separability, seeking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007